
Smile Guide: SMART on FHIR
Development and configuration of SMART on FHIR with Smile CDR

SMART on FHIR with Smile CDR

Table of Contents

Table of Contents 1

List of Figures 2

What to Expect 3

Background 3

Objective 3

Prerequisites 4

Configuring Smile CDR 5

OIC Client Configuration / Creation of an OIC Client 5

Enable SMART on FHIR requests 7

Creating SMART on FHIR WebApp. 10

Creating the App 10

launch.html 11

index.html 11

package.json 12

Create Patient Resource 13

Create Test User With Launch Context. 14

Run and Test the App 16

1

SMART on FHIR with Smile CDR

What to Expect

🕘 Reading time = 1 hour

By the end of this guide you’ll be able to:

● Configure Smile CDR to support a Smart on FHIR app on an EHR or resource server

● Create a simple SMART on FHIR app and

● Connect it to Smile CDR

Background

SMART on FHIR is an open source standards-based API which enables innovators to develop an app once
and have it run anywhere in the healthcare system. SMART on FHIR has defined a secure authorization
method that allows health apps to connect and access protected information from EHR systems.

Prerequisites

The following items/knowledge are required:

1. It’s assumed that there’s an understanding of the documentation below:

a. SMILE CDR

b. SMART on FHIR or Smarthealthit

c. FHIR HL7

2. Smile CDR is already installed. If it’s not installed, please consult the link here:

3. The following SMART app development prerequisites are available:

a. A local server to host the app. (For the purposes of this document, we’ll use node-based
http-server. There’s no need to install it separately.)

b. A basic understanding of JavaScript is beneficial to understand this app.

c. NodeJs installed. If it’s not installed, please consult the link here

2

https://smilecdr.com/docs/getting_started/
https://smilecdr.com/docs/smart/smart_on_fhir_introduction.html
https://docs.smarthealthit.org/
https://www.hl7.org/fhir/overview.html
https://docs.google.com/document/d/1L7sl6iXUOg7wYnO6hj7WNBTQyie-Dodkjx-jZGnDCyA/edit?usp=sharing
https://www.npmjs.com/package/http-server
https://nodesource.com/blog/installing-nodejs-tutorial-windows/

SMART on FHIR with Smile CDR

Tools

The following tools/software will be needed to complete this guide.

● API Testing Platform (Insomnia, Postman or similar)

● Visual Studio Code or Notepad++ to edit HTML and JSON files

● Local server to host the app

3

SMART on FHIR with Smile CDR

Configuring Smile CDR

To use Smile CDR as a launch platform for Smart on FHIR apps, we need to configure the following
modules:

1. OIC Client Configuration

2. SMART Outbound Security Module

3. FHIR Endpoint Module

OIC Client Configuration/Creation of an OIC Client

To support launching the SMART on FHIR applications using Smile CDR, we need to configure the OpenId
Connect Client (OIC Client) module. OpenId Client or OIC is a simple identity layer built on top of the OAuth
2.0 protocol. It allows clients to verify the identity of the End-User based on the authentication performed
by an Authorization Server as well as obtain basic profile information about the End-User in an
interoperable and REST-like manner. To configure the OIC:

1. Sign in to the Web Admin Console of Smile CDR by typing in this link:

http://localhost:9100

2. On the top menu bar, select “Config,” then select “OpenID Connect Client.” You should see a page
like this:

4

https://openid.net/connect/
http://localhost:9100

SMART on FHIR with Smile CDR

3. To create a new client, click on “Create Client.”

4. On the “Create Client” page set the configurations to the specifications below. (There are more
configurations than given below; however, for this guide, only the configurations indicated below
are required.)

Configuration Sample Value Description

Client ID patient_app_demo
This value needs to match the value of
client_id being passed from the App while
sending an authorization request

Client Name SMART Patient Name of the SMART App. This will be shown to
the user while authorizing.

Authorized
Grant Types Authorization Code Enable authorization types that the SoF app

will support. For more information see here

Access Token
Validity 3600 Tokens requested by this client will be valid

for the given time period.

Refresh Token
Validity 86400

If refresh tokens are enabled, any refresh
tokens requested by this client will be valid for
the given time period

Authorized
Redirect URLs

http://127.0.0.1:9201/
http://127.0.0.1:9201/index.h
tml

These are the URLs that the SoF app is
allowed to use. Upon successful authorization,
the user will be redirected to this URL.

Scopes openid launch patient/*.read
offline_access

A list of SMART scope (space separated) that
client is permitted to request. Click here to
read more about scopes

5. Click “Create” and it should create an OIC client for you.

6. The client list should display newly created OIC clients. For future changes to the clients
configuration, click “Modify” and change any configurations as desired.

5

https://smilecdr.com/docs/smart/smart_on_fhir_authorization_flows.html#authorization-flows
https://smilecdr.com/docs/smart/smart_on_fhir_authorization_flows.html#refresh-flow
https://smilecdr.com/docs/smart/smart_on_fhir_smile_cdr.html#smile-cdr-supported-smart-scopes

SMART on FHIR with Smile CDR

Enable SMART on FHIR requests

We'll need to make a few more module configurations to allow the SMART on FHIR App to submit a FHIR
request to Smile CDR.

1. From the top menu bar, select “Config,” then select “Module Config.”

2. We need to enable CORS for the SMART Authentication Module. To do this:

a. On the left pane, go to the “smart_auth module.”

b. Scroll down to the “Cross-Origin Resource Sharing (CORS)” section.

c. Toggle “CORS Enabled” to “YES.”

d. Scroll to the top of the page and then, click “Save” and then click “Restart.”

3. Next, we need to enable the SMART Authentication for the FHIR Endpoint Module.

a. Select the “fhir_endpoint” module from the left pane.

b. Scroll down to the “Dependencies” section.

c. For the “OpenID Connect Authentication” config, select “smart_auth” from the drop-down
menu.

6

SMART on FHIR with Smile CDR

d. On the left pane, scroll down to “Auth: OpenID Connect.”

e. Toggle “OpenID Connect Security” to”YES”.

f. Click “Save,” then “Restart.”

4. Now we need to enable the Anonymous Access to Capability Statement. When doing this, any
requests that don’t supply credentials will be granted the authorities of the designated
Anonymous user. By default, this is a user with the username "ANONYMOUS," but can be modified
using the Anonymous Account Username setting:

a. From the main menu on top, select “Config,” then “User Manager.”

b. Look for the ANONYMOUS user from the list and select “Modify.”

7

https://smilecdr.com/docs/configuration_categories/auth_general_for_apis.html#property-anonymous-account-username

SMART on FHIR with Smile CDR

c. From the “Roles and Permissions” section, scroll down to “FHIR_CAPABILITIES” and click on
“YES” to enable the permission.

d. Click “Save” the user from the top of the page.

At this stage, we have Smile CDR configured to handle SMART on FHIR app requests. In the next section,
we’ll create a SMART on FHIR app.

8

SMART on FHIR with Smile CDR

Creating SMART on FHIR WebApp.

In this section we’ll create a web app for our SMART on FHIR demo app.

To complete this section, you’ll need:

● An API platform like Postman or Insomnia to send and receive data,

● A text editor to create html and JSONfiles

Creating the App

We’ll use the fhir-client.js library to connect our SMART app to the FHIR server. Additional documentation
on fhir-client.js can be found here.

We’ll need to create a new directory and three files; two .html files and a .json file.

To begin:

1. Create a project directory called “SMART-Patient” for this SMART app project

2. Open the project directory

3. Create two .html files named index.html and launch.html

4. Create a .json file with the name package.json for the Node.js project configuration

9

http://docs.smarthealthit.org/client-js/

SMART on FHIR with Smile CDR

launch.html

launch.html is the SMART app’s initial entry point and in a real production environment would be invoked
by the application (i.e. App Gallery/App Sphere) launching your SMART app. This page typically initiates
authorization flow which means it will take parameters from the URL and send the user to the
authentication screen.

To begin:

1. Insert the code below in your “launch.html” file, then save and close the file.

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8" />
<title>SMART: Patient App</title>
<script src="https://cdn.jsdelivr.net/npm/fhirclient/build/fhir-client.js"></script>

</head>
<body>
<script>

FHIR.oauth2.authorize({
// this value should match with the value in the OIC Client config
clientId: "patient_app_demo",
// this list should not include any scope that is
// not mentioned in the Client configuration
scope: "openid launch/patient patient/*.read offline_access",
// (Optional) many servers are capable of using index.html by default
redirectUri: 'index.html',

});
</script>
</body>
</html>

index.html

After the SMART authorization procedure, the authorization server will redirect users to this page. When
this page is invoked, the SMART app will have the authorization to access the FHIR server.

To begin:

10

SMART on FHIR with Smile CDR

1. Insert the code below to your “index.html” file, then save and close the file. Note: replace the
patient id (patient-a) in JavaScript code (line no. 19) with one of the existing patients’ ID, or create a
new patient with this ID. The next section of this guide explains how to create a patient resource.

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8"/>
<title>Example SMART App</title>
<!-- import fhir-client library-->
<script src="https://cdn.jsdelivr.net/npm/fhirclient/build/fhir-client.js"></script>

</head>
<body>
<h2 id="patient_header"> Patient Details</h2>
<h4>Patient Information:</h4>
<pre id="info">Loading...</pre>
<script type="text/javascript">

// this function generated name from HumanName object from Patient resource
function displayName (name) {

return (name.prefix || '') + name.given.join(' ') + ' ' + name.family
}
// Request current logged in Patient Data using fhir-client library and updates DOM on

successful response
FHIR.oauth2.ready().then(async (client) => {

return client.patient.read()
}).then(

function (pt) {
document.getElementById('patient_header').innerText = displayName(pt.name[0])
document.getElementById('info').innerText = JSON.stringify(pt, null, '\t')

},
function (error) {

document.getElementById('patient_header').innerText = 'Error Occurred'
document.getElementById('info').innerText = error.stack

},
).catch(console.error)

</script>
</body>
</html>

package.json

The objective of the package.json script is to record the metadata of the project. This file includes any
dependencies needed to run the Node.js project. Here it just has one example of a dependency; an
http-server—a package that creates a static HTTP server on your computer.

11

https://www.npmjs.com/package/http-server

SMART on FHIR with Smile CDR

To begin:

1. Insert the code below to the “package.json” file, then save and close the file.

{
"name": "smart_patient_app",
"version": "1.0.0",
"scripts": {
"serve": "http-server -p 9201 -c-1",
"start": "npm run serve"

},
"dependencies": {
},
"devDependencies": {
"http-server": "^0.12.3"

}
}

Create Patient Resource

To create a Patient resource with id “patient-a” perform the following.

1. Complete the HTTP operation using either Postman or Insomnia:

URL: http://localhost:8000/Patient/patient-a

(this URL is for default settings. If you have a custom setting, change this

URL to reflect those settings)

Method: PUT

Header: Authorization: Basic YWRtaW46cGFzc3dvcmQ=

(this creates the credentials admin/password)

Header: Content-Type: application/fhir+json

Body: (feel free to change name or birthdate, or to add additional patient details as you wish)

{
"resourceType": "Patient",
"id": "patient-a",
"meta": {
"versionId": "1",
"lastUpdated": "2020-11-10T20:24:48.194+00:00"

12

SMART on FHIR with Smile CDR

},
"name": [{
"family": "Smith",
"given": ["John"]

}],
"gender": "male",
"birthDate": "2020-01-01"

}

2. Click on “Send” (from Insomnia or Postman to send the request). The response should contain the
resource data that we just created. If you want to learn more about different FHIR REST
operations, please checkout this guide.

Create Test User with Launch Context.

In order to test the SMART on FHIR WebApp, we’ll need to create a user with appropriate permissions and
launch contexts.

To create a user:

1. Go to the “Web Admin Console” and log in.

2. Click on “Config” on the top menu bar,then “User Manager.”

3. Click on “Add User.”

4. Fill the necessary fields as indicated below:

13

https://docs.google.com/document/d/1RmsgkRQnBdsY7p--OWpS3-ebohNJb39zHj9WXxJl4t4/edit#heading=h.zf8os94ebjyr

SMART on FHIR with Smile CDR

a. Demographics: set up the username (required) , name and email of the user in this section.

b. Security: set the password for the user.

c. Default Launch Context: set the contexts associated with a user. These context(s) will be
added to SMART auth session, depending on the launch scopes requested(i.e. launch,
launch/patient, launch/location etc..) In other words, these context(s) associate the user
account with the default resources IDs.

14

SMART on FHIR with Smile CDR

d. Roles and Permissions: scroll down to FHIR_READ_ALL_IN_COMPARTMENT and select “Add.”
This will allow access to the resources of its own compartment and the user to access any
resources related to a given patient. Fill the text box with resource ID: “Patient/patient-a” as
below.

5. Scroll to the top of the page and select “Save” to create the user.

Run and Test the App

Now that the Smart Web APP is created and Smile CDR is configured, we need to make sure that
everything is functioning correctly.

1. Open the “terminal/command” prompt.

2. Navigate to the “project directory,” then run the following command:

cd <path-to-project-dir>

Note: replace the <path-to-project-dir> with the actual path to project directory. i.e.
D://SMART-Patient

3. Run the following command:

npm install

Note: this will install required dependencies for a node project listed in the package.json file. (You
need to run this command only once unless you make any changes in the package.json file.)

4. Run the command to start the server:

npm start

5. Copy and paste the following URL into the address bar:

http://127.0.0.1:9201/launch.html?iss=http://localhost:8000&launch=A000

15

http://127.0.0.1:9201/launch.html?iss=http://localhost:8000&launch=A000

SMART on FHIR with Smile CDR

iss: The base URL for the FHIR endpoint. The app will load the server capability statement
from this endpoint which allows it to figure out where to authorize.

launch: This is intended to be a one-time nonce. In a real scenario, this would be randomly
generated.

6. After launching, an authentication page similar to the image below will appear:

7. Enter the credentials then select “Login,”(Use the credential of the user created in the previous
section.) The authorization screen should appear like the image below:

a. Select “Authorize”

16

SMART on FHIR with Smile CDR

8. The authorization server will redirect the user to index.html or root “/” whichever was requested
from launch.html

Congrats, you’ve now successfully created and tested your first SMART on FHIR app with Smile CDR!

17

SMART on FHIR with Smile CDR

Registering an App with the appSphere.

For the purpose of this guide, we’ll use a locally installed App Gallery from Smile CDR. To use a local
instance of Smile CDR, you need the App Gallery/App Management Tool module configured in Smile CDR.
Check out this document to learn how to configure it locally.

To register the app:

1. Go to the App Gallery portals’s homepage, then click on the “Developer Portal”

2. The developer homepage will appear. Select “Get Started” button

3. This will take you to the authentication screen below:

18

https://smilecdr.com/docs/app_gallery/getting_started.html

SMART on FHIR with Smile CDR

4. Enter your developer credentials and click “Login” (if you do not have an account, create one by
clicking “Sign Up”). Upon successful login, you should see the developer dashboard (below). Select
“Register App.”

5. This opens a popup for the app registration process. Proceed with the steps below:

Step 1: Provide the app name as I=it will be displayed on the App Gallery.

19

SMART on FHIR with Smile CDR

Step 2: Select the operating system (i.e., web, iOS or Android) for which the app is available and to
be published in the public-facing site. Fill in the other information as shown below:

a. App Homepage URL: the URL where the app’s download sites can be found. (Note: provide a
homepage URL if no specific app page exists.)

b. URL to the App’s Privacy Policy: URL of a webpage providing the app’s Privacy Policy.

c. URL to the App’s Terms of Service: URL of a webpage describing the app’s Terms of Service.

d. OAuth Redirect URL: URL to which developers are redirected upon successful authentication.

e. Web App Launch URL: URL used to start the authentication process for web apps only.

20

SMART on FHIR with Smile CDR

Step 3: Provide an app description for the public-facing site.

a. Upload an app icon: use the guidelines from the Google Play store (link provided) to upload
an app icon of the acceptable specifications. An option to preview the uploaded image is
provided.

b. Add a short app description: this should be between 20-150 characters for the public-facing
site.

c. Add a long app description: this should be between 200-1000 characters for the
public-facing site.

21

SMART on FHIR with Smile CDR

Step 4: Select all applicable categories from the given options.

a. Audience Category: options include payer, provider, pharma, patient and developer.

b. App Use Category: options include Health & Therapy Management, Provider Care,
Coordination, Clinical Applications, Research and Data Monitoring Analysis.

c. FHIR Version Supported: options include DSTU1, DSTU2, STU3 and R4.

d. Privacy & Security Compliance: options include HIPPA, GDPR, CARIN Code of Conduct and
ONC Model Privacy Notice (note: users may be asked to provide supporting documents).

e. Confidentiality: if the app runs in an execution environment that enables the app to protect
confidential information, leave it as “confidential;” if not, toggle to “public.”

22

SMART on FHIR with Smile CDR

23

SMART on FHIR with Smile CDR

Step 5: Enter any scopes that will be requested from the app from the authorization process. This
field is similar to the scopes configured in the OIDC client configuration.

Step 6 (Optional): Enter details about the app for reviewer evaluation purpose. These will not be
shown to users and are only for the reviewer to verify. If you’re just updating the app and not
submitting a new version, summarize the changes made.

24

SMART on FHIR with Smile CDR

Step 7: Carefully review the legal attestation and either accept or decline the terms that describe
the minimum privacy and security criteria to sufficiently protect patients' protected health
information in accordance with the CMS and ONC.

If you decline, the app will still be allowed to submit and can be approved, too. However, users will
be warned that the app does not attest to the CMS ruling.

Submit the app for review.

25

SMART on FHIR with Smile CDR

The app is now submitted for review and should be listed on the developer dashboard as shown below.
An “In Review” status means it has been submitted to admin for review. The status will change once the
admin either approves or rejects it. Results will be displayed as either “Live” or “Rejected.”

26

SMART on FHIR with Smile CDR

Should you run into trouble, contact your Smile CDR Account Rep.

27

Version: 1.0
Last Updated: November 12, 2021
Principle Author: Chetan Shankar

