$ smilecor

Smile Guide: Channel Import
Configuration Using Kafka

A guided journey on installing and using Smile CDR’s Channel Import functionality

% smilecer

Channel Import—Kafka

Table of Contents
Table of Contents

What to Expect
Background
Objectives
Prerequisites

Installation Instructions for Windows (Docker)
Zookeeper Installation
Kafka Installation
Changes to Your Smile CDR

Installation Instructions for MacOS
Zookeeper and Kafka Download/Setup
Changes to your Smile CDR

Channel Import Module Configuration on Smile CDR Web Admin Console

Kafka-Publisher
Glossary

Reference Links

N oo AW WW N N N N =

e O |
0 N W o

% smilecer

Channel Import—Kafka

What to Expect

4 Reading time = 1 hour

By the end of this document, you'll understand what Channel Import is, how to set up a channel
import and how to use it to ingest data in real-time.

Background

Many health systems already have data stored in FHIR format that can be ingested into Smile
CDR. While there are tools available, such as ETL Import and CSV Bulk Import, these rely on a
static data source, which is often not how you want to have the data ingested. While various
mechanisms exist to attempt to push data in real-time from one system to another, the Channel
Import module aims to provide a channel-based method of ingesting FHIR data into Smile CDR.
For more information please see this link on Channel Import.

Objectives

The intention of this document is to provide a step-by-step procedure of how to set up and use
Smile CDR’s Channel Import. You should be able to successfully complete the setup with little to
no technical background on Channel Import.

Prerequisites:

1. See the following document on jnstalling and configuring Smile CDR. This will need to be

done prior to beginning this tutorial.

2. NodeJs; if it's not installed, please consult the link here on how to install Node.js on Windows or on
MacOs.

3. Atext editor of your choice. We recommend Visual Studio Code, but Notepad (which comes
preinstalled on Windows) and TextEdit (which comes preinstalled on Mac) work perfectly fine.

4. Knowledge of message brokers, Zookeeper and Kafka.

5. Docker Installed.

6. Kafka Publisher/Data Feeder to Kafka.

https://smilecdr.com/docs/channel_import/channel_import_overview.html
https://docs.google.com/document/d/1L7sl6iXUOg7wYnO6hj7WNBTQyie-Dodkjx-jZGnDCyA/edit?usp=sharing
https://nodesource.com/blog/installing-nodejs-tutorial-windows/
https://nodesource.com/blog/installing-nodejs-tutorial-mac-os-x/
https://nodesource.com/blog/installing-nodejs-tutorial-mac-os-x/
https://docs.google.com/document/d/1eeTwVM5FpV78TVIv9CiZ6qjzn9u4htbeYEof87FFhRE/edit?usp=sharing

% smilecer

Channel Import—Kafka

Installation Instructions for Windows (Docker)

Zookeeper Installation

1. To make use of channel import, we need to install Zookeeper on Docker. Please note that
all commands are completed in the command prompt. To do this:

a. First, we have to create a network bridge (Confluent in this case). To do so, copy
and paste the following line into your command terminal (continuing within
your downloads folder), then hit enter:

docker network create confluent --driver bridge

b. Run the below command to load the Zookeeper image on Docker. To do so, copy
and paste the following line into your command terminal, then hit enter:

docker run -d --net=confluent --name=zookeeper -e
ZOOKEEPER CLIENT PORT=2181 -p 2181:2181
confluentinc/cp-zookeeper:5.0.1

c. Next, in Docker, click play to the right of the zookeeper environment. You'll now
see the container icon turn green; zookeeper is running. If it automatically appears
green, this is also fine and there's no need to press play.

Kafka Installation

1. To make use of channel import, we need to install Kafka on Docker. Please note, step a is
completed in the command prompt.

a. First we will load the Kafka Docker container. To do so, copy and paste the
following command into your command prompt

docker run -d --net=confluent --name=kafka -e

KAFKA ZOOKEEPER CONNECT=zookeeper:2181 -e
KAFKA;ADVERTISED_LISTENERS=PLAINTEXT://<<Local IP address>>:9092
-e KAFKA OFFSETS_TOPIC_REPLICATION FACTOR=1 -p 9092:9092
confluentinc/cp-kafka:5.0.1

Note: The entire section highlighted in yellow must be replaced with your own local
IP address. To find this address, click on the Windows Start Icon > Settings >
Network and Internet > Properties. Scroll down and look for your IP address
listed next to IPv4 address.

% smilecor

Channel Import—Kafka

b. In Docker, click play to the right of the Kafka environment. You should see the
container icon turn green, indicating that Kafka is running. If it automatically
appears green, this is also fine and there is no need to press play.

Changes to Your Smile CDR
1. Stop your Smile CDR instance on Docker.

2. Copy the “classes” folder from the Smile CDR Docker container onto your local machine.
To do so, type the following line, then hit enter:

docker cp smilecdr:/home/smile/smilecdr/classes ./

3. Open File Explorer on your computer. Within the Downloads folder, you should now
notice a folder called “classes.” Open this folder.

4. Open the file called “cdr-config-Master.properties” in any text editor (i.e. Notepad, VS
Code, etc...).

5. Once this file is open, you'll notice that all sections of this file are separated by headings
that begin with a “#.” Scroll down to the below section:

Broker options are EMBEDDED_ACTIVEMQ, REMOTE_ACTIVEMQ, KAFKA, NONE

6. Remove the line currently present and replace it with the following (copy and

paste):
module.clustermgr.config.messagebroker.type =KAFKA
module.clustermgr.config.kafka.bootstrap_address =kafka:9092

If you've successfully completed this step, the field should look like the image below:

% smilecor

Channel Import—Kafka

7 cdr-config-Master - Notepad -] X

File Edit Format View Help
Cluster Manager Configuration ~

valid options include H2_EMBEDDED, DERBY_EMBEDDED, MYSQL_5_7, MARIADB_16_1, POSTGRES_9 4, ORACLE_12C, MSSQL_:

module.clustermgr.config.db.driver =H2_EMBEDDED
module.clustermgr.config.db.url =jdbc:h2:file:./database/h2_clustermgr
module.clustermgr.config.db.username =SA
module.clustermgr.config.db.password =SA
module.clustermgr.config.db.schema_update_mode =UPDATE
module.clustermgr.config.stats.heartbeat_persist_frequency ms =15000
module.clustermgr.config.stats.stats_persist_frequency_ms =60000
module.clustermgr.config.stats.stats_cleanup_frequency_ms =300000

i# Broker options are EMBEDDED_ACTIVEMQ, REMOTE_ACTIVEMQ, KAFKA, NONE

module.clustermgr.config.messagebroker.type =KAFKA
module.clustermgr.config.kafka.bootstrap_address =kafka:9092

Request headers to store in the audit log
module.clustermgr.config.audit_log.request_headers_to_store=Content-Type,Host

Other Modules are cConfigured Below

The following setting controls where module configuration is ultimately stored. v
< >
Ln1, Col 1 100% Unix (LF) UTF-8

7. Save this file by holding “ctrl” and “s” (don't change the directory to which it's saved).

8. Now we must copy back the classes folder from the Download's directory on your local
machine to the Smile CDR Docker image. To do so, copy and paste the following line
into your command prompt, then hit enter:

docker cp ./classes smilecdr:/home/smile/smilecdr/

9. Now put Smile CDR on the Confluent Docker network. Copy and paste the following line
into your terminal and click enter:

docker network connect confluent smilecdr
Installation Instructions for MacOS

Zookeeper and Kafka Download/Setup

1. Make sure you've stopped running your Smile CDR instance.

2. Open this link https://kafka.apache.org/quickstart:

a. Open the hyperlink in Step 1 of the website:

STEP 1: GET KAFKA

e latest Kafka release and extract it:

1 | $ tar -xzf kafka_2.13-3.0.0.tgz
2 | $ cd kafka_2.13-3.0.0

https://kafka.apache.org/quickstart

% smilecer

Channel Import—Kafka

b. Click on the suggested link at the top of the following page in order to download
a zip folder:

RT
fel
/ APACH E COMMUNITY-LED DEVELOPMENT "THE APACHE WAY" § D
/ Q &
Projects ~ People + Community + License ~ Sponsors ~ ADPS
We suggest the following site for your download:
h I /3.0.0/kafka_213-3.0.0.tgz
‘Alternate download 1ocations are suggested below.
It is essential that you verify the integrity of the downloaded file using the PGP signature (.asc file) or a hash (.md5 or .shax file)
he 0.0/kafka_213-3.0.0.tgz
h 0.0/kafka_213-3.0.0.tgz

VERIFY THE INTEGRITY OF THE FILES

Itis essential that you verify the integrity of the downloaded file using the PGP signature (l.asc file) or a hash (.md5 or |.shax file). Please read Verifying Apache
Software Foundation Releases for more information on why you should verify our releases

The PGP signature can be verified using PGP or GPG. First download the KEYS aswell as the ‘asc signature file for the relevant distribution,

% gpg —import KEYS
% gpg —veri: fy downloaded_file.asc downloaded_file

or

c. Extract the zip folder into your Downloads folder.

3. Open a new terminal window and navigate to your Downloads folder, then the Kafka
folder you extracted in Step 2.c. To do so, run (copy and paste) the following
commands:

cd downloads
cd kafka x.x-x.x.x

Note: the section highlighted yellow will be replaced with whichever version number you
downloaded, in this case “2.13-3.0.0.” If you ran these commands correctly, your terminal
should look similar to the image below:

Daniels-MacBook-Pro-2:Downloads danielmoriana% cd kafka_2.13-3.8.8

Daniels—MacBook—Pro-2:kafka_2.13-3.08.0 danielmoriana$

4. To start Zookeeper, copy and paste the following command into your terminal, then
press enter:

bin/zookeeper-server-start.sh config/zookeeper.properties
5. Leave this terminal window open.

6. In a new terminal window, navigate to your Downloads folder, then the Kafka folder
you extracted in Step 2.c (you can use the same commands as in Step 3):

% smilecer

Channel Import—Kafka

7. To start the Kafka server, run the following command:

bin/kafka-server-start.sh config/server.properties

Daniels—MacBook—Pro—-2:~ danielmoriana$ cd dewnloads
Daniels—MacBook—Pro—-2:downloads danielmoriana$ cd kafka_2.13-3.8.8

Daniels—MacBook—-Pro—-2:kafka_2.13-3.8.8 danielmoriana% bin/kafka—server—start.sh
config/server.properties

8. Leave this terminal window open.

Changes to your Smile CDR

1. In a new terminal window, navigate to the directory of your Smile CDR. In this example,
it's located in the computer’s Downloads folder. Once complete, navigate to your Smile
CDR’s Classes folder:

Daniels—MacBook—-Pro-2:~ danielmoriana% cd downloads
Daniels—MacBook—-Pro-2:downloads danielmoriana$ cd smilecdr

Daniels—MacBook—-Pro-2:smilecdr danielmoriana$ cd classes

2. Copy and paste the following command into your terminal, then hit enter:

vi cdr-config-Master.properties

Daniels-MacBook-Pro-2:classes danielmoriana$ ls
cdr-config-Master.properties config_seeding smilecdr-demo.jwks
cdr-messages.properties fhir_gateway

client_certificates logback.xml
Daniels—MacBook—Pro-2:classes danielmoriama$% vi cdr-config—Master.properties

3. Once the file is open, hit the “i” key to change to insert mode where you can now edit the
file.
4. Locate the following property in the file:

module.clustermgr.config.messagebroker. type =EMBEDDED ACTIVEMQ

% smilecer

Channel Import—Kafka

HEERRRERERR AR ERERRAE AR ERRRRREERRRRREE AR BRERRRARRERRERAREEERRRREERRREREEAEE
Node Configuration

HEERRRERERR AR ERERRRE AR ERRRRREERRRRREEEERRRERERRRRARERREAAREEERRRRRERRREREEAEE
node.id =Master

HEERRRERERR AR ERERRRE R ERRRRREERRRRREEEERRREREERRRARERRERAREEERRRRRERRREREEAEE

Cluster Manager Configuration

HEERERERERR AR ERERRRE R ERRRRREERRRRREEEERRREREERAARRERRERAREEERRRERRERRREREEAEE

Valid options include H2_EMBEDDED, DERBY_EMBEDDED, MYSOL_5_7, MARIADB_18_1, POSTGRES_9_&, ORAC
LE_12C, MSSQL_2812
module.clustermgr.config.db.
module.clustermgr.config.db.
ermgr
module.
module.
module.
module.
module.
module.

driver
url

2_EMBEDDED
dbec:h2:file:./database/h2_clust
clustermgr.config.db.username
clustermgr.config.db.password
clustermgr.config.db.schema_update_mode
clustermgr.config.stats.heartbeat_persist_frequency_ms
clustermgr.config.stats.stats_persist_frequency_ms
clustermgr.config.stats.stats_cleanup_frequency_ms

module.

- e e
clustermgr.config.messagebroker.type
Request headers to store in the audit log

module.clustermgr.config.audit_log.request_headers_to_store=Conten ype,Host

HEEHRRERERR AR ERERRRERRERRR AR ERRRRREE AR ERERARARRERRERAEEEERRRREERRREREEAEE
Other Modules are Configured Below
HEEHBRERERRERRRERERRRERERRRRREERRRRREEEERRREREERRARRERRERAREEERRRRRERRREREEAEE

The following setting controls where module configuration is ultimately stored.
When set to "DATABASE" (which is the default), the clustermgr configuration is
always read but the other modules are stored in the database upon the first
launch and their configuration is read from the database on subsequent
launches. When set to "PROPERTIES", values in this file are always used.

In other words,
only used to seed the database
will be ignored after that. In
are read every time the system
overwritten by what is in this

#
#
#
#
#
#
#
#
#
#
#
#

node.propertysource

in DATABASE mode, the module definitions below this linme are

upon the very first startup of the sytem, and
PROPERTIES mode, the module definitions below
starts, and existing definitions and config are
file.

IATABASE

BRBEHERRRERARRRERERRREEERAREBRRRREEERRRREER AR EERRAREERRRREERERREEERRRERERRRERER

Database Configuration

BRBERERRRERARRRERERRREEERAREBERRREEERRRREER AR EERRARERRRRREERERREEERRRBRERRREEER

module.persistence.type
module.persistence.config.db.
module.persistence.config.db.
persistence
module.persistence.config.
module.persistence.config.
module. i .config.
module. ».config.
ce
module.
module.
module.
module.
module.

url

db.
db.
db.
db.

persistence.config.db.

driver

hibernate.showsqgl
username

password A
hibernate_search.directory

schema_update_mode
persistence.config.dao_config.expire_search_results_after_minutes=68
persistence.config.dao_config.allow_multiple_delete.enabled=false
persistence.config.dao_config.allow_imline_match_url_references.enabled=false
persistence.config.dao_config.allow_external_references.enable

=PERSISTENCE_R4
2_EMBEDDED
dbc:h2:file:./database/h2_fhir_

=false
=5A

./database/lucene_fhir_persisten

=UPDATE

false

BRBBHERRRERARRRERERRREEERAREBERAREEERRRREER AR EERRAREERRAREEBERREEE BB ERERRREEER

Subscription

BRBBRERRRERARRRERERRREEERRREBERRREEERRRREER AR EERRAREERRRREERERREEE BB ERERRRREER

module.subscription.type

module.subscription.requires.PERSISTENCE_ALL

—— INSERT —

UBSCRIPTION_MATCHER
ersistence

5. Change this property value from “EMBEDDED_ACTIVEMQ" to “KAFKA" (see below):

module.clustermgr.config.messagebroker. type

=KAFKA

% smilecer

Channel Import—Kafka

HEERERAREARRRAR AR ERRERRRERRERRERARRRAR AR ERRRARRERRERAERRRIRRREREEAREABRAREE
Node Configuration
HEERERARERRRRAREARERRRRRRERREERERARRRABEREEREERRRARRERRERAERRRIRAREREEARRARRAREE
node.id =Master

FRARRER AR R AR R AR RE AR R R R AR R R R R AR AR

Cluster Manager Configuration
FHEREEEHRRRREEEERRRRRRARREEE R R RREEEE R ARG R R R R ARG R AR R R R R RRRREE

Valid options include H2Z_EMBEDDED, DERBY_EMBEDDED, MYSQL_5_7, MARIADB_18_1, POSTGRES_9_4, ORAC
LE_12C, MSsQL_2812

module.clustermgr.config.db.driver H2_EMBEDDED
module.clustermgr.config.db.url :h2:file:./database/h2_clust
ermgr

module.clustermgr.config.db.username

module.clustermgr.config.db.password

module.clustermgr.config.db.schema_update_mode
module.clustermgr.config.stats.heartbeat_persist_frequency_ms
module.clustermgr.config.stats.stats_persist_frequency_ms
module.clustermgr.config.stats.stats_cleanup_frequency_ms =3080080

BroKer optlons are EMBEUUEU_AUTLVEMU, HEMUIE_AUILVEMUW, KAFKA, NUNE
medule.clustermgr.config.messagebroker.type =KAFKA]

Request headers to store in the audit log
module.clustermgr.config.audit_log.request_headers_to_store=Content-Type,Host

HEERERARERRRRAR AR ERRERRRERRERRERARRRAREREEREERRRARRERRERAERARIRRREREEAREARRAREE
Other Modules are Configured Below
HEERERAREARRRAR AR ERRERRRERRERRERARRRAREREEREERRRARRERRERAERRRIRAREREEARRABRAREE

The following setting controls where module configuration is ultimately stored
when set to "DATABASE" (which is the default), the clustermgr configuration is
always read but the other modules are stored in the database upon the first
launch and their configuration is read from the database on subsequent
launches. When set to "PROPERTIES", values in this file are always used.

In other words, im DATABASE mode, the module definitions below this line are
only used to seed the database upon the very first startup of the sytem, and
will be ignored after that. In PROPERTIES mode, the module definitions below
are read every time the system starts, and existing defin ons and config are
overwritten by what is in this file.

#
#
#
#
#
#
#
#
#
#
#
#

node.propertysource =DATABASE

HEERERARERRRRAREARERRERRRERRERRERARRRAREREERRERRRARRERRERAERRRIRAREREEARRARRAREE

Database Configuration
HEERERAREARRRAREARERRERRRERRERRERARRRAR AR ERRRARRERRERAERARIRREREEARRARRAREE
module.persistence.type ERSISTENCE_Ré4
module.persistence.config.db.driver 2_EMBEDDED
module.persistence.config.db.url dbc:h2:file:./database/h2_fhir_
persistence

module.persistence.config.db.hibernate.showsgl

module.persistence.config.db.username

module.persistence.config.db.password

module.persistence.config.db.hibernate_search.directory =./database/lucene_fhir_persisten
ce

module.persistence.config.db.schema_update_mode =UPDATE
module.persistence.config.dao_config.expire_search_results_after_minutes=68
module.persistence.config.dac_config.allow_multiple_delete.enabled=false
module.persistence.config.dao_config.allow_inline_match_url_reference
module.persistence.config.dao_config.allow_external_references.enable

HEERERARERARRAREARERRERRRERRERRERARRRAREREEREERRRARRERRERAERRRIRAREREEARRARRAREE

Subscription
HEERERARERRRRAREARERRERRRERRERRERARRRAEREEREERRRARRERRERAERARIRAREREEAREARRAREE
module.subscription.type UBSCRIPTION_MATCHER
module.subscription.requires.PERSISTENCE_ALL ersistence

—— INSERT ——

6. Once the change is done, save the file by pressing the “esc” key, then type “:wq” and hit

% smilecor

Channel Import—Kafka

Channel Import Module Configuration on Smile CDR Web Admin
Console

1. Click the following link to open the Smile CDR web admin console:
http://localhost:9100/signin
Click the green “Sign In” button and fill out the prompt page with the following information:
i. Username: admin
ii. Password: password

b. On the home page, click on the “Add Module of Type” drop down menu, then
select “Channel Import” and click on the green “add” button.

$ smilecor 2 Config -

08 Configuration
Cluster 5
COE. T
This secti modules, endpoint: ity, and other ile CDR s divided i indi ding to the needs of the
‘‘‘‘‘‘‘ deployment.
©
9000 [} Manage Node Modules
9100 @ /
8000 © Anodei i d it hosts rform individual functi
8001 ©
8002 @ ‘Add Module of Tyy Channel Import v Node Master © Add
]
[m]
ecurity M
© Node ID Module ID Description Status
9200 ©
Master clustermgr Cluster Manager © Running
Master admin json JSON Admin API ©Running
Master admin_web Web Admin Console © Running
Master fhir_endpoint FHIRREST Endpoint (R4) @ Running
Master fhirweb_endpoint FHIRWeb Console © Running
Master package_registry Package Registry Endpoint ©Running
Master persistence FHIR Storage (R4 Relational) ©Running
Master subscription Subscription Matcher (All FHIR Versions) ©Running
Master local security Local Inbound Security @ Running
Master smart_auth SMART Outbound Security @ Running

10

http://localhost:9100/signin

% smilecor

Channel Import—Kafka

2. The next step is to configure the channel import module. To do this, set the

configurations to the specifications below:

Configuration

Channel Name

Concurrent
Consumers

Concurrent
Retry
Consumers

Default
mediaType

Retry Channel
Name

Retry
Delay(ms)

Failure Channel
Name

Sample Value

import

application/fhir+json

retry

1000

failed

Description

The name of Kafka topic or ActiveMQ queue
where inbound resources will be arriving.

The number of the concurrent consumers.

The number of concurrent consumers on the
retry channel.

If set, applies the mediaType to incoming
messages that are missing the mediaType
attribute. Legal values are text/plain, text/csv,
application/fhir+json, application/json.
Defaults to application/fhir+json.

The name of Kafka topic or ActiveMQ queue
where inbound resources are sent when a
failure occurs during processing of an
incoming resource. Non-null value required
for retry to be enabled.

The minimum amount of time to wait
(milliseconds) between retry attempts.

The name of Kafka topic or ActiveMQ queue
where resources are sent after they have
exceeded the maximum number of retry
attempts, and have still not been successfully
processed.

11

% smilecor

Channel Import—Kafka
Maximum The maximum amount of time to wait
Delay(ms) (milliseconds) between retry attempts. This
1000 : S :

between provides an upper limit for exponential
attempts. backoff.

The maximum amount of times to attempt

. import before considering a message failed.

Maximum .

Non-zero value required for retry to be
amount of 1

enabled. If set to zero, failed messages will
skip the retry channel completely and go
directly to the failure channel.

retry attempts.

FHIR Storage
Module (any
FHIR version)

persistence (FHIR Storage (R4 | The FHIR Storage module to associate with
Relational)) this module.

3. Atthe top of the page, click “Save,” then “Start” to begin the module (See Figure 3).

S smilecor

uuuuuuuuuuuuuu

00 00000 00 ©

12

% smilecer

$ smilecor 8 Contg -
o Mo Cot st e ot
Cluster

—

Node: Master

clustermgr

admin_json
admin_web

9000
9100

~ channel_import

Channel Import
nnel Retry

Deper

Show Al

fhir_endpoint
fhirweb_endpoint

8000
8001
package_registry 8002
persistence
subscription

local_security

smart_auth 9200

NNode Master > Module channel_import
Process. Module
Presquile @ Running Stopped
. .
.
@ |
Channel Import.
Channel Name
Q
2} Concurrent Consumers) The number of the concurrent
& 3
© Concurrent Retry The number of cc
) Consumers 5
[

Channel Import ETL Script ifset supplesan ETL
(Text)

Channel Import ETL Scriot

Channel Import—Kafka

Type Channel Import
Status Timestamp / Description
11:39:40

< Func

- function

tion
throw "not implemented!';

handleChannel Tnpor t JsonPayload(jsondbject) {

5t

throw 'not implemented!';

3

4. We must now grant the Anonymous user with Super User Permission from your Smile CDR

Web Admin GUI. To do so:
a.

c

localhost:

smilecor

jer Manager

Isers

(Username or Family Name)

Module

Node: Master
Module: local_security

Node: Master
Module: local_security

A Home % Config v #Runtime~ €

£ Module Config

&% User Manager

Q Search Parameters
~OpenlD Connect Clients
~OpenlD Connect Servers
EB Config Diagnostics

Username

ADMIN

ANONYMOUS

on “YES” to enable the permission.

Role
ROLE_SUPERUSER

- I3

Click on the “Config” drop-down menu, then select “User Manager."”

local_security (Master) v M+¥GCENVE

Family Name

GenericUser

Anonymous

Given Name Last Active Date 2FA Roles and Permissions
Admin 2021-10-08 No Superuser
Anonymous 2021-10-08 No

From the list of users, search for “ANONYMOUS"” and click on “Modify.”
From the “Roles and Permissions” section, scroll down to “ROLE_SUPERUSER"” and click

Superuser

User has all permissions to do anything. Use this
permission with caution since it gives the user access
to almost all administrative functions.

d. Scroll to the top of the page and click “save.”

13

% smilecer

Channel Import—Kafka

Kafka-Publisher

1.

We need to publish data to the Kafka message broker. To do this, we've created a basic
Kafka publisher simulator with GUI. Download the following zipped folder.

Unzip the “kafka-publisher.zip” to your Downloads folder.
Navigate to the Downloads folder by running the following command:
cd Downloads

Navigate to the Kafka-publisher zip folder by running the following command, then
click enter:

cd kafka-publisher

Next we will install the required npm/JavaScript Packages. To do so, copy and paste the
following into your command prompt, then click enter:

npm install

Now we must start the Kafka publisher simulator. To do so, copy and paste the following
command into your command prompt, then click enter:

npm run start

Once it starts, your command line should look like this:

Bl npm start

:\Usersh\KishoreKulkarni\Downloads\kafka-publisher>npm start

» kafka-publisher@e.e.8 start
» node ./bin/www

Listening on port 4081

7. Open the following link: http://localhost:4001

14

https://drive.google.com/file/d/1rxgXVFCm4fH478lsxCH7brygsMG4nnHj/view?usp=sharing
http://localhost:4001

% smilecor

Channel Import—Kafka

8. You should see a new page that allows you to create, update and delete records using
Kafka.

Kafka publisher Simulator
Make sure you have conngured the kafka endpoint and topic name correcﬂy in the default.]son file
Operation Type
CREATE v

For 'CREATE' operation id from resource will be ignored auto generated
For 'UPDATE' and ‘DELETE' Operations resource must contain id

Resource FHIR-JSON

10 “system": "http://terminology.hl7.org/CodeSystem/v2-0203", o
"code”:

20 "mandant-
Ln:1 Col:1

9. The GUI page comes with a sample FHIR-JSON resource. Select the Operation Type as
“CREATE"” and click on “Submit.” This shows that the message was successfully published
to Kafka and should display the same message as the screenshot below:

Kafka publisher Simulator

Make sure you have configured the Kafka endpoint and topic name correctly i the default son file

Message published to Kafka Successfully (Operation :CREATE) x

‘Operation Type

CREATE v

“urn:0id:0.1.2.3.4.5.6.7",

Note: If this property in the Smile persistence module isn't enabled, it'll throw an error message.
To resolve either, set the property to "true” or remove the following code from the
Kafka-publisher and submit:

15

% smilecor

Channel Import—Kafka

Code (line 32-34):

"managingOrganization": {

"reference": "Organization/1"

}

10. To validate if the Smile CDR has consumed that resource from the Kafka broker, hit the
FHIR endpoint and check to see if the total number of resources increased to 7 from 6.

a. To do this, open the following link and check how many patients our Smile
CDR FHIR endpoint is returning: http://localhost:8000/Patient
b. Since a new resource was added in Step 9, you'll notice that the total number of

resources is 1. If a resource was not added successfully, the total number of
resources will display 0.

< C @ localhost:8000/baseR4/Patient

This result is being rendered in HTML for easy viewing. You may access this content as Raw JSON or Raw XML or Raw Turtle or view this content in HTML JSON or HTML XML or HTML Turtle . Response generated in 24ms.
HTTP 200 OK

Response Headers

@1 FHIR REST Endpoint (R4) (FHIR Server; FHIR 4.0.1/R4; HAPT FHIR 5.5.0)
1;charset=utf-8

11. This confirms that our Channel Import module set up works fine end-to-end with Smile
CDR, Zookeeper and Kafka running on a Docker.

16

http://localhost:8000/Patient

% smilecor

Channel Import—Kafka

Glossary

Channel: a medium through which you can send a message to a destination.When two
applications wish to exchange data, they do so by sending the data through a channel that
connects the two. The application sending the data may not know which application will receive
the data, but by selecting a particular channel to send the data on, the sender knows that the
receiver will be one that's looking for that sort of data by looking for it on that channel. In this
way, the applications that produce shared data have a way to communicate with those that wish
to consume it.

Kafka: perhaps the most popular modern message broker. Kafka is open source and used at
almost every web scale company. At Smile CDR we use both Kafka and Active MQ, but for the
purposes of simplicity, will be using Kafka for this Smile Guide. For more information on Kafka see
this link on Apache Kafka.

Message Broker: also known as an integration broker or interface engine. It's an intermediary
computer program module that translates a message from the formal messaging protocol of the
sender to the formal messaging protocol of the receiver. Essentially, it enables applications,
systems, and services to communicate with each other and exchange information. Message
brokers are elements in telecommunication or computer networks where software applications
communicate by exchanging formally-defined messages. Message brokers are a building block of
message-oriented middleware (MOM) but are typically not a replacement for traditional
middleware like MOM and Remote Procedure Call (RPC).

Messaging Queue: a form of asynchronous service-to-service communication used in serverless
and microservices architectures. Messages are stored on the queue until they're processed and
deleted. Each message is processed only once, by a single consumer.

Zookeeper: primarily used to track the status of nodes in the Kafka cluster and maintain a list of
Kafka topics and messages. For more information, see this link on ZooKeeper.

17

https://www.youtube.com/watch?v=XFqm_ILuhs0&list=PLt1SIbA8guusxiHz9bveV-UHs_biWFegU&index=1
https://www.youtube.com/watch?v=AS5a91DOmks

% smilecor

Channel Import—Kafka

Reference Links

1. Smile CDR & Docker Installation Guide
https://docs.google.com/document/d/1rlgOif6EBWFphGvbro8GUwEVK|Z1geV1/edit#

2. Node JS - Windows Installation
https://www.youtube.com/watch?v=AuCuHvgOeBY&t=53s

3. Demo on Channel Import- By Gary Graham

https://vimeo.com/510491999

(In the video if Gary refers to any file for sample code or installation instruction that should be
inside below repo.)

https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel import
4. Scripts/Commands to Run Zookeeper, Kafka and Create Network Bridge on Docker

https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel import/setup

5. Sample Patient Resource
https://www.hl7.org/fhir/patient-examples.html

6. Apache-Kafka Download
https://kafka.apache.org/quickstart

18

https://docs.google.com/document/d/1rlg0jf6E8WFphGvbro8GUwEvKJZ1geV1/edit
https://www.youtube.com/watch?v=AuCuHvgOeBY&t=53s
https://vimeo.com/510491999
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import/setup
https://www.hl7.org/fhir/patient-examples.html
https://kafka.apache.org/quickstart

g smilecor

Smile CDR Inc.

622 College Street, Suite 401
Toronto, Ontario M6G 1B4, Canada
info@smilecdr.com

1(800) 683-1318

www.smilecdr.com

Copyright @2021 Smile CDR Inc.

All product names, logos, and brands are the property of their
respective owners. All company, product and service names used are for
identification purposes only. The use of these names, logos, and brands
does not imply endorsemernt.

Version: 1.0
Last Updated: November 15, 2021
Principle Author: Kishore Kulkarni

