
Smile Guide: Channel Import
Configuration Using Kafka

A guided journey on installing and using Smile CDR’s Channel Import functionality

Channel Import—Kafka

Table of Contents
Table of Contents 1

What to Expect 2

Background 2

Objectives 2

Prerequisites 2

Installation Instructions for Windows (Docker) 3
Zookeeper Installation 3
Kafka Installation 3
Changes to Your Smile CDR 4

Installation Instructions for MacOS 5
Zookeeper and Kafka Download/Setup 5
Changes to your Smile CDR 7

Channel Import Module Configuration on Smile CDR Web Admin Console 10

Kafka-Publisher 13

Glossary 17

Reference Links 18

1

Channel Import—Kafka

What to Expect

🕘 Reading time = 1 hour

By the end of this document, you’ll understand what Channel Import is, how to set up a channel
import and how to use it to ingest data in real-time.

Background

Many health systems already have data stored in FHIR format that can be ingested into Smile
CDR. While there are tools available, such as ETL Import and CSV Bulk Import, these rely on a
static data source, which is often not how you want to have the data ingested. While various
mechanisms exist to attempt to push data in real-time from one system to another, the Channel
Import module aims to provide a channel-based method of ingesting FHIR data into Smile CDR.
For more information please see this link on Channel Import.

Objectives

The intention of this document is to provide a step-by-step procedure of how to set up and use
Smile CDR’s Channel Import. You should be able to successfully complete the setup with little to
no technical background on Channel Import.

Prerequisites:

1. See the following document on installing and configuring Smile CDR. This will need to be
done prior to beginning this tutorial.

2. NodeJs; if it’s not installed, please consult the link here on how to install Node.js on Windows or on
MacOS.

3. A text editor of your choice. We recommend Visual Studio Code, but Notepad (which comes
preinstalled on Windows) and TextEdit (which comes preinstalled on Mac) work perfectly fine.

4. Knowledge of message brokers, Zookeeper and Kafka.

5. Docker Installed.

6. Kafka Publisher/Data Feeder to Kafka.

2

https://smilecdr.com/docs/channel_import/channel_import_overview.html
https://docs.google.com/document/d/1L7sl6iXUOg7wYnO6hj7WNBTQyie-Dodkjx-jZGnDCyA/edit?usp=sharing
https://nodesource.com/blog/installing-nodejs-tutorial-windows/
https://nodesource.com/blog/installing-nodejs-tutorial-mac-os-x/
https://nodesource.com/blog/installing-nodejs-tutorial-mac-os-x/
https://docs.google.com/document/d/1eeTwVM5FpV78TVIv9CiZ6qjzn9u4htbeYEof87FFhRE/edit?usp=sharing

Channel Import—Kafka

Installation Instructions for Windows (Docker)

Zookeeper Installation

1. To make use of channel import, we need to install Zookeeper on Docker. Please note that
all commands are completed in the command prompt. To do this:

a. First, we have to create a network bridge (Confluent in this case). To do so, copy
and paste the following line into your command terminal (continuing within
your downloads folder), then hit enter:

docker network create confluent --driver bridge

b. Run the below command to load the Zookeeper image on Docker. To do so, copy
and paste the following line into your command terminal, then hit enter:

docker run -d --net=confluent --name=zookeeper -e
ZOOKEEPER_CLIENT_PORT=2181 -p 2181:2181
confluentinc/cp-zookeeper:5.0.1

c. Next, in Docker, click play to the right of the zookeeper environment. You’ll now
see the container icon turn green; zookeeper is running. If it automatically appears
green, this is also fine and there’s no need to press play.

Kafka Installation

1. To make use of channel import, we need to install Kafka on Docker. Please note, step a is
completed in the command prompt.

a. First we will load the Kafka Docker container. To do so, copy and paste the
following command into your command prompt

docker run -d --net=confluent --name=kafka -e
KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 -e
KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://<<Local IP address>>:9092
-e KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1 -p 9092:9092
confluentinc/cp-kafka:5.0.1

Note: The entire section highlighted in yellow must be replaced with your own local
IP address. To find this address, click on the Windows Start Icon > Settings >
Network and Internet > Properties. Scroll down and look for your IP address
listed next to IPv4 address.

3

Channel Import—Kafka

b. In Docker, click play to the right of the Kafka environment. You should see the
container icon turn green, indicating that Kafka is running. If it automatically
appears green, this is also fine and there is no need to press play.

Changes to Your Smile CDR

1. Stop your Smile CDR instance on Docker.

2. Copy the “classes” folder from the Smile CDR Docker container onto your local machine.
To do so, type the following line, then hit enter:

docker cp smilecdr:/home/smile/smilecdr/classes ./

3. Open File Explorer on your computer. Within the Downloads folder, you should now
notice a folder called “classes.” Open this folder.

4. Open the file called “cdr-config-Master.properties” in any text editor (i.e. Notepad, VS
Code, etc...).

5. Once this file is open, you’ll notice that all sections of this file are separated by headings
that begin with a “#.” Scroll down to the below section:

Broker options are EMBEDDED_ACTIVEMQ, REMOTE_ACTIVEMQ, KAFKA, NONE

6. Remove the line currently present and replace it with the following (copy and
paste):

module.clustermgr.config.messagebroker.type =KAFKA

module.clustermgr.config.kafka.bootstrap_address =kafka:9092

If you’ve successfully completed this step, the field should look like the image below:

4

Channel Import—Kafka

7. Save this file by holding “ctrl” and “s” (don’t change the directory to which it’s saved).

8. Now we must copy back the classes folder from the Download’s directory on your local
machine to the Smile CDR Docker image. To do so, copy and paste the following line
into your command prompt, then hit enter:

docker cp ./classes smilecdr:/home/smile/smilecdr/

9. Now put Smile CDR on the Confluent Docker network. Copy and paste the following line
into your terminal and click enter:

docker network connect confluent smilecdr

Installation Instructions for MacOS

Zookeeper and Kafka Download/Setup

1. Make sure you’ve stopped running your Smile CDR instance.

2. Open this link https://kafka.apache.org/quickstart:

a. Open the hyperlink in Step 1 of the website:

5

https://kafka.apache.org/quickstart

Channel Import—Kafka

b. Click on the suggested link at the top of the following page in order to download
a zip folder:

c. Extract the zip folder into your Downloads folder.

3. Open a new terminal window and navigate to your Downloads folder, then the Kafka
folder you extracted in Step 2.c. To do so, run (copy and paste) the following
commands:

cd downloads

cd kafka_x.x-x.x.x

Note: the section highlighted yellow will be replaced with whichever version number you
downloaded, in this case “2.13-3.0.0.” If you ran these commands correctly, your terminal
should look similar to the image below:

4. To start Zookeeper, copy and paste the following command into your terminal, then
press enter:

bin/zookeeper-server-start.sh config/zookeeper.properties

5. Leave this terminal window open.

6. In a new terminal window, navigate to your Downloads folder, then the Kafka folder
you extracted in Step 2.c (you can use the same commands as in Step 3):

6

Channel Import—Kafka

7. To start the Kafka server, run the following command:

bin/kafka-server-start.sh config/server.properties

8. Leave this terminal window open.

Changes to your Smile CDR

1. In a new terminal window, navigate to the directory of your Smile CDR. In this example,
it’s located in the computer’s Downloads folder. Once complete, navigate to your Smile
CDR’s Classes folder:

2. Copy and paste the following command into your terminal, then hit enter:

vi cdr-config-Master.properties

3. Once the file is open, hit the “i” key to change to insert mode where you can now edit the
file.

4. Locate the following property in the file:

module.clustermgr.config.messagebroker.type =EMBEDDED_ACTIVEMQ

7

Channel Import—Kafka

5. Change this property value from “EMBEDDED_ACTIVEMQ” to “KAFKA” (see below):

module.clustermgr.config.messagebroker.type =KAFKA

8

Channel Import—Kafka

6. Once the change is done, save the file by pressing the “esc” key, then type “:wq” and hit
enter.

9

Channel Import—Kafka

Channel Import Module Configuration on Smile CDR Web Admin
Console

1. Click the following link to open the Smile CDR web admin console:

http://localhost:9100/signin

Click the green “Sign In” button and fill out the prompt page with the following information:

i. Username: admin

ii. Password: password

b. On the home page, click on the “Add Module of Type” drop down menu, then
select “Channel Import” and click on the green “add” button.

10

http://localhost:9100/signin

Channel Import—Kafka

2. The next step is to configure the channel import module. To do this, set the
configurations to the specifications below:

Configuration Sample Value Description

Channel Name import The name of Kafka topic or ActiveMQ queue
where inbound resources will be arriving.

Concurrent
Consumers 3 The number of the concurrent consumers.

Concurrent
Retry
Consumers

3 The number of concurrent consumers on the
retry channel.

Default
mediaType application/fhir+json

If set, applies the mediaType to incoming
messages that are missing the mediaType
attribute. Legal values are text/plain, text/csv,
application/fhir+json, application/json.
Defaults to application/fhir+json.

Retry Channel
Name retry

The name of Kafka topic or ActiveMQ queue
where inbound resources are sent when a
failure occurs during processing of an
incoming resource. Non-null value required
for retry to be enabled.

Retry
Delay(ms)

1000 The minimum amount of time to wait
(milliseconds) between retry attempts.

Failure Channel
Name failed

The name of Kafka topic or ActiveMQ queue
where resources are sent after they have
exceeded the maximum number of retry
attempts, and have still not been successfully
processed.

11

Channel Import—Kafka

Maximum
Delay(ms)
between
attempts.

1000

The maximum amount of time to wait
(milliseconds) between retry attempts. This
provides an upper limit for exponential
backoff.

Maximum
amount of
retry attempts.

1

The maximum amount of times to attempt
import before considering a message failed.
Non-zero value required for retry to be
enabled. If set to zero, failed messages will
skip the retry channel completely and go
directly to the failure channel.

FHIR Storage
Module (any
FHIR version)

persistence (FHIR Storage (R4
Relational))

The FHIR Storage module to associate with
this module.

3. At the top of the page, click “Save,” then “Start” to begin the module (See Figure 3).

12

Channel Import—Kafka

4. We must now grant the Anonymous user with Super User Permission from your Smile CDR
Web Admin GUI. To do so:

a. Click on the “Config” drop-down menu, then select “User Manager.”

b. From the list of users, search for “ANONYMOUS” and click on “Modify.”
c. From the “Roles and Permissions” section, scroll down to “ROLE_SUPERUSER” and click

on “YES” to enable the permission.

d. Scroll to the top of the page and click “save.”

13

Channel Import—Kafka

Kafka-Publisher

1. We need to publish data to the Kafka message broker. To do this, we’ve created a basic
Kafka publisher simulator with GUI. Download the following zipped folder.

2. Unzip the “kafka-publisher.zip” to your Downloads folder.

3. Navigate to the Downloads folder by running the following command:

cd Downloads

4. Navigate to the Kafka-publisher zip folder by running the following command, then
click enter:

cd kafka-publisher

5. Next we will install the required npm/JavaScript Packages. To do so, copy and paste the
following into your command prompt, then click enter:

npm install

6. Now we must start the Kafka publisher simulator. To do so, copy and paste the following
command into your command prompt, then click enter:

npm run start

Once it starts, your command line should look like this:

7. Open the following link: http://localhost:4001

14

https://drive.google.com/file/d/1rxgXVFCm4fH478lsxCH7brygsMG4nnHj/view?usp=sharing
http://localhost:4001

Channel Import—Kafka

8. You should see a new page that allows you to create, update and delete records using
Kafka.

9. The GUI page comes with a sample FHIR-JSON resource. Select the Operation Type as
“CREATE” and click on “Submit.” This shows that the message was successfully published
to Kafka and should display the same message as the screenshot below:

Note: If this property in the Smile persistence module isn’t enabled, it’ll throw an error message.
To resolve either, set the property to ”true” or remove the following code from the
Kafka-publisher and submit:

15

Channel Import—Kafka

Code (line 32-34):

"managingOrganization": {

"reference": "Organization/1"
}

10. To validate if the Smile CDR has consumed that resource from the Kafka broker, hit the
FHIR endpoint and check to see if the total number of resources increased to 7 from 6.

a. To do this, open the following link and check how many patients our Smile
CDR FHIR endpoint is returning: http://localhost:8000/Patient

b. Since a new resource was added in Step 9, you’ll notice that the total number of
resources is 1. If a resource was not added successfully, the total number of
resources will display 0.

11. This confirms that our Channel Import module set up works fine end-to-end with Smile
CDR, Zookeeper and Kafka running on a Docker.

16

http://localhost:8000/Patient

Channel Import—Kafka

Glossary

Channel: a medium through which you can send a message to a destination.When two
applications wish to exchange data, they do so by sending the data through a channel that
connects the two. The application sending the data may not know which application will receive
the data, but by selecting a particular channel to send the data on, the sender knows that the
receiver will be one that’s looking for that sort of data by looking for it on that channel. In this
way, the applications that produce shared data have a way to communicate with those that wish
to consume it.

Kafka: perhaps the most popular modern message broker. Kafka is open source and used at
almost every web scale company. At Smile CDR we use both Kafka and Active MQ, but for the
purposes of simplicity, will be using Kafka for this Smile Guide. For more information on Kafka see
this link on Apache Kafka.

Message Broker: also known as an integration broker or interface engine. It’s an intermediary
computer program module that translates a message from the formal messaging protocol of the
sender to the formal messaging protocol of the receiver. Essentially, it enables applications,
systems, and services to communicate with each other and exchange information. Message
brokers are elements in telecommunication or computer networks where software applications
communicate by exchanging formally-defined messages. Message brokers are a building block of
message-oriented middleware (MOM) but are typically not a replacement for traditional
middleware like MOM and Remote Procedure Call (RPC).

Messaging Queue: a form of asynchronous service-to-service communication used in serverless
and microservices architectures. Messages are stored on the queue until they’re processed and
deleted. Each message is processed only once, by a single consumer.

Zookeeper: primarily used to track the status of nodes in the Kafka cluster and maintain a list of
Kafka topics and messages. For more information, see this link on ZooKeeper.

17

https://www.youtube.com/watch?v=XFqm_ILuhs0&list=PLt1SIbA8guusxiHz9bveV-UHs_biWFegU&index=1
https://www.youtube.com/watch?v=AS5a91DOmks

Channel Import—Kafka

Reference Links
1. Smile CDR & Docker Installation Guide

https://docs.google.com/document/d/1rlg0jf6E8WFphGvbro8GUwEvKJZ1geV1/edit#
2. Node JS - Windows Installation

https://www.youtube.com/watch?v=AuCuHvgOeBY&t=53s
3. Demo on Channel Import– By Gary Graham

https://vimeo.com/510491999
(In the video if Gary refers to any file for sample code or installation instruction that should be
inside below repo.)
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import

4. Scripts/Commands to Run Zookeeper, Kafka and Create Network Bridge on Docker
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import/setup

5. Sample Patient Resource
https://www.hl7.org/fhir/patient-examples.html

6. Apache-Kafka Download
https://kafka.apache.org/quickstart

18

https://docs.google.com/document/d/1rlg0jf6E8WFphGvbro8GUwEvKJZ1geV1/edit
https://www.youtube.com/watch?v=AuCuHvgOeBY&t=53s
https://vimeo.com/510491999
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import
https://gitlab.com/smilecdr-public/feature-walkthroughs/-/tree/master/channel_import/setup
https://www.hl7.org/fhir/patient-examples.html
https://kafka.apache.org/quickstart

Version: 1.0
Last Updated: November 15, 2021
Principle Author: Kishore Kulkarni

